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Abstract. The Shapley-Shubik and Banzhaf power indices have been used
to measure the voting power of voters in a variety of political institutions,
including the United Nations Security Council, the United States electoral
college, and proportionate representation legislatures in a variety of countries.
These power indices depend only upon the voting rules; hence, each assigns an
equal power to each of the nine Justices on the United States Supreme Court,
because each Justice has one vote and cases are determined by simple major-
ity. Once actual people having particular ideological positions and behavioral
patterns become members of a political institution, their true voting power
can be measured more accurately by taking into account their past behavior
and political alignment with respect to other voters; for example, the Justice
seen as occupying the central position in the liberal to conservative ordering of
U.S. Supreme Court Justices is often considered more powerful than the other
Justices. This paper examines power indices that take into account both the
voting rules and the voting records of voters and applies these indices to the
United States Senate.

1. Introduction

In a weighted voting game, the Shapley-Shubik power index examines each
possible ordering of the players and finds a pivotal voter in each ordering, taking
the average as the player’s relative power. Meanwhile, the Banzhaf power index
examines each possible coalition of players, marking all pivotal voters in each coali-
tion and using that average as the player’s relative power. The goal of this paper,
similar to that of Frank and Shapley and Edelman and Chen is to extend these
power indices to also take into account the past voting history of each player, to
gain a more accurate sense of relative power in particular political institutions with
particular voters. The resulting power index is applied to the United States Senate
using 32 substantive votes that occurred in 2017.

2. Definitions

To find the power of voters in the Senate, the idea of a weighted voting game
(Definition 3) is used to describe the voting system itself. This is a special type of
coalition game (Definition 1) in which the outcome is binary.
Definition 1. A coalition game (N,w) consists of the following:

(1) A set N = {1, 2, ..., n} of at least two players along with all nonempty
subsets S ⊆ N , called coalitions.

(2) For each coalition S, a determined worth w(S) ⊆ R.
(3) Utilities ui given by the payoff received by player i.

Definition 2. A voting game is a coalition game (N,w) for which:
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(1) w(S) = 1 or w(S) = 0 for each coalition S.
(2) w(N) = 1.
(3) w(T ) = 1 whenever S ⊂ T and w(S) = 1.
(4) w(N\S) = 0 whenever w(S) = 1.

The coalitions S satisfying w(S) = 1 are called winning, and the coalitions S
satisfying w(S) = 0 are called losing. Let Sc denote the set of all coalitions.

Definition 3. A weighted voting system, denoted by [q; v1, v2, ..., vn], consists
of a positive quota q and nonnegative voting weights v1, v2, ..., vn for the n voters.
The weighted voting system [q; v1, v2, ..., vn] is called a representation of the n-player
weighted voting game for which coalition S is winning if and only if ∑i∈Svi ≥ q.

In a weighted voting game, the Shapley-Shubik power index can be used to
measure each player’s relative power. This method considers all possible orderings
of players as being equally likely, finding the ’pivotal’ player in each ordering who
could swing the election.

Definition 4. For a weighted voting game represented by [q; v1, v2, ..., vn], let O =
{p1, p2, ..., pn!} be the set of all permutations of N . For each ordering pk ∈ O, let
Mj(pk) be the set of all players in the ordering up to and including player j ∈ N .
Then for each pk ∈ O, the marginal contribution of player i is given by

ci(pk) =

{
1 ifw(Mi(pk)) ≥ q and w(Mi(pk)\i) < q

0 otherwise

If ci(pk) = 1, we say that player i is pivotal on the ordering pk. The Shapley-
Shubik power of player i ∈ N is given by

ϕ(i) =

∑
pk∈O

ci(pk)∑
j∈N

∑
pk∈O

cj(pk)

Rather than orderings, the Banzhaf power index considers all possible coali-
tions of players as being equally likely. In each winning coalition, if there are any
players that could unilaterally drop out of the coalition and cause it to become
losing by doing so, each is marked as pivotal.

Definition 5. For a weighted voting game represented by [q; v1, v2, ..., vn], let Si

denote the set of all winning coalitions S containing player i for which S\i is losing;
in each of these, player i is considered pivotal. Then the Banzhaf power of player
i is given by

β(i) =
|Si|∑

j∈N

|Sj |

These two power indices are commonly used to find the a priori power of
voters in a voting system. However, we are interested in using real voting data
from particular voting systems to better capture the actual power of each voter.
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3. Transforming Voting Data Into an Issue Space

3.1. Voting Data. Consider a weighted voting game represented by [q; v1, v2, ..., vn].
Suppose the players have voted on multiple cases in the past (let C be the set of
all such cases) and their votes have been recorded in a vote matrix:

Definition 6. A vote matrix for a weighted voting game is any matrix X of the
following form:

X =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
. . .

...
xc1 xc2 xc3 . . . xcn


where xij = 1 if player i ∈ N voted Yea on issue j ∈ C, xij = −1 if player i voted
Nay on issue j, and xij = 0 if player i abstained from voting on issue j.

Each row of X describes how each player voted on a particular case; each
column describes how a particular player voted on each case.

3.2. Issue Space. In order to more accurately assess the relative power of each
voter in the above case, we would like to plot each voter as a point in some issue
space Rm so that we may use the techniques explained in Section 4. The most
obvious way to do this is to simply plot each column of X as a point in Rc. However,
if n and c are relatively large - as they are in the case of the U.S. Senate - it
becomes computationally infeasible to calculate the techniques of Section 4 in this
way. Therefore, the dimension of the issue space must be reduced.

One way of doing this is to consider a real-life phenomenon. A number of
political interest groups regularly rate each Congressperson based on their voting
history, assigning them a percentage score that describes how well the Congressper-
son’s ideology aligns with that of the interest group. Presumably, this is done in
a similar manner to the following: for each issue that comes before Congress, the
interest group decides whether it wants the issue to pass or fail, and how strongly
they prefer that outcome. This can be represented by a real number between 1
and -1, with a 1 indicating a strong preference for passage, a -1 indicating a strong
preference for failure, and a 0 indicating indifference.

Definition 7. A weight vector for a vote matrix X is a vector y = [y1, y2, ..., yc]
where yj ∈ R is in the closed interval [−1, 1] for all j ∈ C.

To evaluate Congress (or the set of voters in any weighted voting game) on a
set of issues, the interest group can simply decide on its weight vector y and take
the matrix product yX to obtain a vector z, each element zi of which indicates the
interest group’s overall level of agreement with voter i. 1 indicates strong agreement,
-1 indicates strong disagreement, and 0 could indicate either indifference or mixed
feelings.

Definition 8. The evaluation vector z for a vote matrix X and a weight vector
y is the product z = yX in Rc.

In this way, the interest group has essentially reduced the issue space down to
a single dimension which corresponds to the interest group’s ideology. Of course,
this is an incomplete representation of the situation; after all, Planned Parenthood
is unlikely to care about foreign policy issues and will not factor them into its
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evaluation of Congress. However, by using multiple interest groups, the dimension
of the issue space could be reduced while still giving a more complex representation
of the situation.

3.3. Random Generation of Interest Groups. Due to inconsistent data, as
well as the subjectivity that comes from choosing particular real interest groups to
represent important issues, actual interest group data was not used in this project.
However, a pseudo-random number generator was used to uniformly generate num-
bers between -1 and 1 to serve as elements of weight vectors. These random weight
vectors were then used to reduce the dimensionality of the issue space.

Definition 9. A weight matrix A for a vote matrix X is any matrix of the form:

A =


a11 a12 a13 . . . a1c
a21 a22 a23 . . . a2c
...

...
...

. . .
...

ad1 ad2 ad3 . . . adc


where each row of A is a weight vector.

Definition 10. The evaluation matrix Z for a vote matrix X and a weight
matrix A is the matrix product AX. Each row of Z is an evaluation vector.

Therefore, to reduce the dimensionality of the issue space Rc, we can randomly
generate a weight matrix A with a chosen number m of rows, multiply by the vote
matrix X, and plot each column of the resulting evaluation matrix Z as a point in
Rm.

4. Finding the Power of Voters in an Issue Space

Once voters have been placed in a suitable issue space, we can attempt to
find their relative power by extending the ideas of the Shapley-Shubik and Banzhaf
power indices into the issue space representation.

4.1. Extending the Shapley-Shubik Power Index. The Shapley-Shubik power
index considers each ordering of players as being equally likely. However, perhaps
some orderings are more or less likely than others. We use the method described
by Frank and Shapley to effectively attach weights to each ordering describing the
likelihood of the ordering.

Imagine a hypothetical issue (one on which the voters could, in theory, hold a
vote) as a direction in the issue space. Now consider a hyperplane perpendicular to
the issue direction, positioned away from the direction so that all voters are on one
side of it. Now imagine sweeping that hyperplane through the voters in the chosen
direction, passing through them in a particular order. We can now proceed as we
would with the original Shapley-Shubik index: go through the voters in order, add
up their votes, and label as pivotal the voter that causes the vote sum to exceed
the quota.

If we were to do this for all possible issues (all possible directions in the issue
space), we could map each player to a region on the unit hypersphere corresponding
to the directions in which that player is the pivotal voter. Then each player’s relative
power would be given by the proportion of the surface area of the unit hypersphere
to which they are mapped.
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Definition 11. Let [q; v1, v2, ..., vn] be a weighted voting game with evaluation
matrix Z. Define the set of unit vectors ∆ = {b : b ∈ Rm and |b| = 1}, and let
B be a random vector uniformly distributed over ∆. To order the players on a
direction, define the function T : B → permutation of N , which considers each
element pi ∈ BZ, creates a list R of all the elements of BZ sorted in ascending
order, and finally replaces each element pi ∈ R with i, returning T (B) = R. Then
the Extended Shapley-Shubik power of player i ∈ N is given by

ϕ(i) = E[ci(T (B))]

where E is the expectation operator, and c is defined as in Definition 4.

4.2. Extending the Banzhaf Power Index. The Banzhaf power index considers
each coalition of players as being equally likely. However, perhaps some coalitions
will realistically never form due to the ideologies of the voters (the geometry of the
points in the issue space).

Imagine a coalition as a hypersphere in Rm that contains all the points cor-
responding to the players in the coalition, and contains no points corresponding
to the players outside of the coalition. Then some coalitions will not be possible;
that is, there will not exist a hypersphere that contains all points in the coalition
without containing points outside of the coalition. If we proceed as we would for
the simple Banzhaf power index but only consider coalitions that are possible, we
may have a more accurate sense of the voters’ power.

Definition 12. Let V = [q; v1, v2, ..., vn] be a weighted voting game with vote matrix
X and evaluation matrix Z = [z1, z2, ..., zn], and let S ⊆ N be a coalition. Then S
is possible if there exists a hypersphere Q in Rm such that

t ∈ Q ∀ t ∈ {zi | i ∈ S}

u /∈ Q ∀ u ∈ {zi | i /∈ S}
Let Si denote the set of all possible winning coalitions S containing i for which S\i
is possible and losing.

Definition 13. For a weighted voting game represented by [q; v1, v2, ..., vn], the
Extended Banzhaf power of player i ∈ N is given by

β(i) =
|Si|∑

j∈N

|Sj |

5. The United States Senate

The U.S. Senate can be thought of as the weighted voting game [51; 1, 1, ..., 1]
with a total of 101 1’s after the 51. While there are technically only 100 Senators,
the Vice President is allowed to cast a vote in the case of a tie; therefore, the
Vice President has as much power as a Senator, since he or she is able to vote in
every case where his or her vote would swing the election. The vote matrix used
in this analysis consists of the 32 ”Passage” votes conducted in the Senate in 2017,
gathered from the website www.govtrack.us/congress/votes.

The Vice President only voted in the case of a tie, so a 0 (for Not Voting)
was recorded in cases that were not tied. Additionally, Senator Jeff Sessions was
promoted to Attorney General in early 2017 and subsequently replaced by Senator
Luther Strange. Since Senator Sessions was present for only 5 of the 32 votes,
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he was removed from this analysis entirely, and in his place, a 0 was recorded for
Senator Strange on those 5 cases.

Due to the computation time involved in calculating the Extended Shapley-
Shubik and Extended Banzhaf power indices for 101 players in multiple dimensions,
this analysis only considers a single dimension at a time (that is, the weight ma-
trix consists of a single weight vector). This results in a single evaluation vector.
However, the process of generating a weight vector and producing an evaluation
vector was repeated 1000 times, and the resulting Extended Shapley-Shubik and
Extended Banzhaf power indices were averaged separately. Then, that whole pro-
cess was repeated 1000 times, with each set of averages stored as a datum, and the
resulting data were used to create two box-and-whisker plots, one for each power
index. These are displayed in the appendix. The x-axis contains the 101 senators,
and the y-axis shows the spread and median of their power on a scale from 0 to 1.

A fair number of Senators voted in exactly the same way on all 32 issues
as at least one other Senator; this explains why many of the boxes look identical.
Additionally, one may notice that the Senators are in the same order in both graphs.
This will always be the case in one dimension, due to the following result.

Theorem 1. Let V = [q; v1, v2, ..., vn] be a weighted voting game with vote matrix
X and evaluation matrix Z = [z1, z2, ..., zn], where v1 = v2 = ... = vn = 1 and q =⌊
n
2

⌋
+ 1. If Z contains exactly one row, then the relative power orderings produced

by the Extended Shapley-Shubik and Extended Banzhaf methods are the same. That
is, for all i, j ∈ N , ϕ(i) < ϕ(j) if and only if β(i) < β(j).

Proof. In one dimension, a hypersphere is simply a line segment. Thus, if coalition S
includes the voter with point Zi and the voter with point Zj such that Zi ≤ Zj , then
S also includes all voters with points Zk such that Zi ≤ Zk ≤ Zj . Note also that
since all players have 1 vote and the quota is a simple majority, all minimally win-
ning coalitions contain a number of voters equal to the quota. Let Q = [q1, q2, ..., qn]
be the list of players as ordered on the line; that is, Zq1 ≤ Zq2 ≤ ... ≤ Zqn .

Then the possible minimally winning coalitions are

{q1, q2, ..., ql}, {q2, q3, ..., ql+1}, ..., {ql, ql+1, ..., qn} where l =
⌊n
2

⌋
+ 1

and furthermore, for each possible minimally winning coalition S containing player
i, S\i is always losing, but is only possible if Zi ≤ Zj for all j ∈ S or if Zi ≥ Zj

for all j ∈ S; that is, only the endpoints of a coalition are pivotal, because no other
member could leave without breaking the circle into two pieces. Observe that only
ql is an endpoint in two of the possible minimally winning coalitions; all other player
points are endpoints in only one such coalition. Therefore, β(i) = frac2n+ 1 if
i = l and β(i) = frac1n+ 1 otherwise.

Suppose ϕ(i) < ϕ(j); that is, that E[ci(T (B))] < E[cj(T (B))]. Then for
some ordering T (b) (call the direction ’left’), ci(T (b)) = 0 but cj(T (b)) = 1, which
means that w(Mj(T (b))) ≥ q and w(Mj(T (b))) < q but either w(Mi(T (b))) < q or
w(Mi(T (b))) ≥ q. Suppose w(Mi(T (b))) < q; then fewer than half of the players
come before player i in the ordering, which means that i can only be the left
endpoint of a minimally winning coalition in the Banzhaf calculation, and since
there are only two directions, i is Banzhaf pivotal in exactly one minimally winning
coalition. Suppose w(Mi(T (b))) ≥ q; then more than half of the players come before
player i in the ordering, which means that i can only be the right endpoint of a
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minimally winning coalition in the Banzhaf calculation, and since there are only two
directions, i is Banzhaf pivotal in exactly one minimally winning coalition. Since
E[ci(T (B))] < E[cj(T (B))] and there are only 2 possible orderings, it must not be
the case that on the other ordering, w(Mi(T (b))) ≥ q and w(Mi(T (b))) < q but
either w(Mj(T (b))) < q or w(Mj(T (b))) ≥ q. Therefore, either w(Mi(T (b))) < q,
w(Mi(T (b))) ≥ q, or both w(Mj(T (b))) ≥ q and w(Mj(T (b))) < q. If the third is
true, then exactly half of the players other than j are on j’s left and half are on
the right, which means j is Banzhaf pivotal twice, and thus β(i) < β(j).

Suppose β(i) < β(j); that is, |Si|∑
k∈N

|Sk| <
|Sj |∑

k∈N

|Sk| . Then player i must be Banzhaf

pivotal in exactly one minimally winning coalition, and player j must be pivotal
in exactly two. Therefore, exactly half of the players other than j must be to
j’s left, and half to j’s right. This means that, for both possible orderings T (b),
w(Mi(T (b))) = q and w(Mj(T (b))) < q. However, either more than half of the
players other than i must be to i’s right, or more than half of the players other
than i must be to i’s left. If the former, then w(Mi(T (b))) ≥ q, and if the latter,
then w(Mi(T (b))) < q, so either way, ϕ(i) < ϕ(j).

�

The only difference in one dimension between these two power indices, then, is
that the Extended Shapley-Shubik method awards more power to the most powerful
voters and less power to the least powerful voters than does the Extended Banzhaf.

According to this analysis, the most powerful politician was Senator Johnny
Isakson of Georgia, who was assigned a median of 0.043 by the Extended Shapley-
Shubik index and a 0.0102 by the Extended Banzhaf index. The least powerful
was a seven-way tie between Senators Jack Reed, Chuck Schumer, Sherrod Brown,
Amy Klobuchar, Bob Casey Jr., Sheldon Whitehouse, and Brian Schatz, who each
were assigned 0.005 by the Extended Shapley-Shubik and 0.0097 by the Extended
Banzhaf.

Upon looking at the list of Senators in order of power (see the appendix),
it becomes apparent that party alignment is significant. Every single one of the
35 least powerful Senators is a Democrat, while the top 16 are all Republican.
This makes some sense, as the Republicans comfortably hold a simple majority in
the Senate, which means that the most powerful Senators ought to be moderate
Republicans, not Democrats. However, one might also expect some of the most
far-right Republicans to be near the bottom of the ranking as well, which is not the
case.
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7. Appendix

Each Senator was assigned an ID, which is displayed on the x-axis of the
following box plots. It can also be seen next to their name in the following list.

List of Senators in ascending order of power:
20 Sen. John “Jack” Reed [D]
22 Sen. Charles “Chuck” Schumer [D]
29 Sen. Sherrod Brown [D]
50 Sen. Amy Klobuchar [D]
53 Sen. Robert “Bob” Casey Jr. [D]
54 Sen. Sheldon Whitehouse [D]
78 Sen. Brian Schatz [D]
1 Sen. Maria Cantwell [D]
26 Sen. Tammy Baldwin [D]
64 Sen. Michael Bennet [D]
65 Sen. Alan “Al” Franken [D]
80 Sen. Tammy Duckworth [D]
81 Sen. Elizabeth Warren [D]
18 Sen. Patty Murray [D]
42 Sen. Chris Van Hollen Jr. [D]
45 Sen. Christopher Murphy [D]
72 Sen. Richard Blumenthal [D]
2 Sen. Thomas Carper [D]
24 Sen. Debbie Stabenow [D]
58 Sen. Martin Heinrich [D]
59 Sen. Gary Peters [D]
60 Sen. Mark Warner [D]
62 Sen. Jeanne Shaheen [D]
66 Sen. Chris Coons [D]
87 Sen. Timothy Kaine [D]
97 Sen. Margaret “Maggie” Hassan [D]
9 Sen. Dianne Feinstein [D]
25 Sen. Ron Wyden [D]
32 Sen. Benjamin Cardin [D]
36 Sen. Robert “Bob” Menéndez [D]
49 Sen. Kirsten Gillibrand [D]
63 Sen. Jeff Merkley [D]
88 Sen. Cory Booker [D]
46 Sen. Mazie Hirono [D]
95 Sen. Kamala Harris [D]
3 Sen. Thad Cochran [R]
5 Sen. John Cornyn [R]
12 Sen. Orrin Hatch [R]
16 Sen. Mitch McConnell [R]
21 Sen. Pat Roberts [R]
27 Sen. Roy Blunt [R]
28 Sen. John Boozman [R]
31 Sen. Shelley Capito [R]
43 Sen. Roger Wicker [R]
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44 Sen. John Thune [R]
57 Sen. Bill Cassidy [R]
68 Sen. Cory Gardner [R]
7 Sen. Richard Durbin [D]
14 Sen. Patrick Leahy [D]
35 Sen. Edward “Ed” Markey [D]
39 Sen. Bernard “Bernie” Sanders [I]
41 Sen. Tom Udall [D]
98 Sen. Catherine Cortez Masto [D]
11 Sen. Charles “Chuck” Grassley [R]
19 Sen. Bill Nelson [D]
61 Sen. James Risch [R]
73 Sen. Marco Rubio [R]
83 Sen. Steve Daines [R]
85 Sen. Deb Fischer [R]
48 Sen. Dean Heller [R]
71 Sen. Tim Scott [R]
6 Sen. Michael Crapo [R]
79 Sen. Tom Cotton [R]
30 Sen. Richard Burr [R]
75 Sen. John Hoeven [R]
8 Sen. Michael Enzi [R]
23 Sen. Richard Shelby [R]
56 Sen. John Barrasso [R]
70 Sen. James Lankford [R]
77 Sen. Ron Johnson [R]
90 Sen. David Perdue [R]
0 Sen. Lamar Alexander [R]
40 Sen. Patrick “Pat” Toomey [R]
51 Sen. Claire McCaskill [D]
52 Sen. Jon Tester [D]
92 Sen. Thom Tillis [R]
13 Sen. James “Jim” Inhofe [R]
67 Sen. Joe Manchin III [D]
91 Sen. Joni Ernst [R]
94 Sen. Benjamin Sasse [R]
47 Sen. Joe Donnelly [D]
84 Sen. Heidi Heitkamp [D]
33 Sen. Jeff Flake [R]
37 Sen. Jerry Moran [R]
82 Sen. Angus King [I]
86 Sen. Ted Cruz [R]
89 Sen. Dan Sullivan [R]
93 Sen. Mike Rounds [R]
76 Sen. Mike Lee [R]
10 Sen. Lindsey Graham [R]
96 Sen. John Kennedy [R]
15 Sen. John McCain [R]
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69 Sen. Todd Young [R]
38 Sen. Robert “Rob” Portman [R]
99 Sen. Luther Strange [R]
17 Sen. Lisa Murkowski [R]
74 Sen. Rand Paul [R]
4 Sen. Susan Collins [R]
55 Sen. Bob Corker [R]
100 Vice President Mike Pence [R]
34 Sen. John “Johnny” Isakson [R]
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Figure 1. Box-and-whisker plot for the Senate using the Ex-
tended Shapley-Shubik power index
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Figure 2. Box-and-whisker plot for the Senate using the Ex-
tended Banzhaf power index


